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AN ECONOMETRIC ASSESSMENT OF THE ROLE OF SPACE IN THE ALLOCATION 

OF THE EU RURAL DEVELOPMENT POLICY’S EXPENDITURE 
 

1. Introduction: The Objective of the Study 

This paper is aimed at modelling the allocation of the Rural Development Policy (RDP) 

expenditure at “local” level, by analysing NUTS 3 level throughout the EU-27 (about 1,300 

observations). At such a disaggregated level, different effects may drive the spatial allocation 

of this EU expenditure. Firstly, a country effect is observed: EU Member States show 

different intensities of RDP expenditure as effect of the well known differentials in the rural 

support across EU countries. Then, a specific rural effect is expected to capture the fact that, 

at least in principle, the more rural a given region is, the larger is the amount of RDP support 

it is expected to receive. This effect may deeply vary according to alternative definitions of 

rurality, though. To this respect, the paper defines rural areas according to: i) population 

density (the lower the density the more rural the region); ii) the Eurostat (2010) urban-rural 

typologies and iii) the PeripheRurality Indicator, a composite indicator obtained by Camaioni 

et al. (2013). Lastly, a pure spatial effect is admitted. Back to Tobler’s first law of geography 

(geography and neighbourhood matter; Tobler, 1970), this effect captures the idea that the 

amount of support received by a given region can be also influenced by the amount of support 

received by the neighbouring regions and by their degree of rurality as well.  

As a matter of fact, the research objective is not new: previous studies already 

investigated the territorial allocation of the EU RDP funds (Shucksmith et al., 2005; 

Crescenzi et al., 2011). However, these works only considered NUTS 2 regions and the 

allocation of RDP support did not actually concern real expenditure but only the ex ante 

allocation of funds (as established by political decisions taken at the EU and national levels), 

or the reconstruction of the real expenditure based on some sample observations (e.g., FADN 

data). Here, total real payments are considered as registered ex post by the EU bureaus 

aggregating individual beneficiaries at NUTS 3 level. Furthermore, previous studies limited 

the attention to the EU-15; here, the analysis concerns the whole EU-27 space. 

The main reason for working at the NUTS 3 level with real expenditure data is that the 

expenditure observed at this territorial scale only partially depends on some top-down 

political decisions, observable ex ante. It is also affected by the bottom-up capacity of 

territories to attract and use these funds, and this actual delivery at a lower territorial level can 

only be observed ex post. Such kind of policy evaluation, therefore, does not only concern 

political decisions but has also to do with the real implementation of policies across space.  

The paper estimates the above-mentioned country effect, rural effect and pure spatial 

effect in the allocation of the RDP funds through a sequence of spatial models, from a generic 

OLS specification to models where spatial dependence is made explicit in different forms: i) 

the SLX model, accounting for the spatially-lagged independent variables (in particular the 

spatial lag of the rural effect); ii) the SEM (Spatial Error Model), specifying a spatially 

autocorrelated error term; iii) the SAR (Spatial AutoRegressive) model, containing the 

spatially lagged dependent variable; iv) the SDM (Spatial Durbin model) containing both a 

spatially lagged dependent variable and spatially lagged independent variables. 

 

2. Data 

2.1. RDP Expenditure 

The Rural Development Policy (RDP) is the second pillar of the Common Agricultural 

Policy (CAP) and, in the 2007-2013 programming period, it is financed by the European 

Agricultural Fund for Rural Development (EAFRD). EAFRD expenditures do not show 

homogenous spatial allocations. Here, distribution of funds across the EU-27 space is 

investigated assessing total EAFRD actual expenditure observed at NUTS 3 level (NUTS 
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2006 classification; about 1,300 regions) for years 2007 to 2011.
1
 NUTS 3 regions are largely 

heterogeneous throughout the EU-27. Thus, in order to get comparable data, RDP expenditure 

is expressed in intensity terms: RDP expenditure per hectare of utilised agricultural area 

(€/UAA); RDP expenditure per annual work unit employed in agriculture (€/AWU); RDP 

expenditure per thousand Euros of agricultural Gross Value Added (€ / 000 €).
2
 

According to these indicators, the spatial allocation of the RDP expenditure intensity is 

rather heterogeneous and follows a complex pattern. For instance, the RDP expenditure 

intensity per unit of UAA is particularly low in both the plain regions of North Western 

Europe and of Spain. Conversely, the RDP expenditure intensity per agricultural GVA (as 

expressed in thousand €) is particularly high in the regions of Eastern European Countries, 

due to their lower agricultural GVA values (Figure 1). 

 

 
Figure 1. 2007-2011 RDP expenditure per hectare of UAA (left) and per thousand Euros of 

Agricultural GVA (right) 

 

2.2. Modelling the Rural Effect: Alternative Definitions of Rurality  

Among the factors affecting spatial allocation of RDP expenditure across EU regions, the 

degree of rurality (rural effect) could be considered as a prominent one. Nevertheless, its 

relevance may vary according to alternative definitions. A wide literature has focused on this 

topic, but homogeneous and univocal definitions of rural areas are still lacking at international 

level (Anania and Tenuta, 2008). Complexity in defining rural areas at EU level is partially 

justified by the wide demographic, socio-economic and geographical differences still 

affecting EU rural areas (European Commission, 2006; Hoggart et al., 1995; Copus et al., 

2008) as well as by the lack of comparable statistics at a disaggregated level (Bertolini et al., 

2008). In spite of these issues, some indicators are universally considered as valid criteria in 

order to identify rural areas. Actually, both population density and the urban-rural typologies 

computed by OECD (1994; 1996; 2006) and the European Commission (Eurostat, 2010) are 

                                                           
1 The original sample is composed by 1303 NUTS 3 regions. However, some small and very urban regions have been 

excluded from the analysis because their values of UAA, AWU and agricultural GVA are very small thus generating 

“artificially” high levels of expenditure intensity. Thus, it has been decided to exclude those regions fulfilling at least one the 

following criteria: i) UAA ≤ 1000 ha.; ii) Agricultural AWU ≤ 10; iii) GVA from agriculture ≤ 100,000.00 €. Accordingly, 

30 NUTS 3 regions (capital cities and other city regions, mainly located in the United Kingdom) have been excluded. Besides 

these 30 urban outliers, other 15 regions far from the European continent are regarded as outliers and therefore excluded 

(e.g., the NUTS 3 regions belonging to the French Departements d’outre-Mer and to the Spanish and Portuguese Atlantic 

Islands). Eventually, the number of total observations under investigation is 1258. 
2 EAFRD expenditure data come from the European Commission. Data on utilised agricultural area (UAA) and agricultural 
annual work units (AWU) employed in agriculture are taken from the Eurostat Farm Structure Survey. Data on agricultural 
GVA come from Eurostat National and Regional Economic Accounts. 
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usually adopted to define rural areas. In particular, within the OECD-Eurostat methodologies, 

NUTS 3 regions in EU-27 Member States are classified as predominantly urban (PU), 

intermediate (IR) and predominantly rural (PR) regions according to population density and 

the presence of major urban areas.  

Given the large heterogeneity across the EU rural space, however, approaches just based 

on density are largely outdated: on the contrary, multidimensional approaches are suggested 

in defining rurality (FAO-OECD Report, 2007; The Wye Group, 2007). Following this 

approach, a comprehensive PeripheRurality Indicator (PRI) has been computed by Camaioni 

et al. (2013). This synthetic indicator is obtained by applying a principal component analysis 

(PCA) to a set of 24 variables collected at NUTS 3 level
3
. From PCs extraction, an ideal EU 

‘urban benchmark’ is defined computing, for each PC, the average score between the only 

two EU global Metropolitan Economic Growth Areas (MEGAs), Paris and London (ESPON, 

2005). Lastly, the comprehensive PRI is defined as the distance between any NUTS 3 region 

and this urban benchmark according to the above-mentioned PCs. Actually, the PRI of the i-th 

region is computed as the following Euclidean distance (Camaioni et al., 2013):  

  NixxPRI
p ubpipi   ,

2
       (1) 

where N = 1, …., n indicates the set of regions under consideration, xip represents the i-th 

region’s score for  the p-th PC and xubp represents the urban benchmark’s score for the p-th 

PC. By construction, the greater the PRI the more rural and/or peripheral the i-th region is. 

Thus, in order to take into account different measures of rurality, in the present analysis 

the so-called ‘rural effect’ will be alternatively expressed by the following indicators: 

population density (the lower the density, the more rural the region); the PRI (the greater the 

PRI, the more rural the region); Eurostat (2010) urban-rural typologies (a discrete ordinal 

variable: Predominantly Rural, PR, regions, Intermediate, IR, regions and Predominantly 

Urban, PU, regions). 

 

3. The Econometric Specifications 

3.1. OLS Model and Tests for Spatial Autocorrelation 

The first suggested model to test the main drivers in the allocation of the RDP support 

across EU NUTS 3 regions is a simple Ordinary Least Squares (OLS) model. It does not take 

into account any specific spatial effect and it can be expressed in the following form: 

         (2) 

where: Y is the (1288 x 1) vector indicating the RDP expenditure intensity (alternatively 

expressed per UAA, AWU, 000 € of Agricultural GVA), D is the (1288 x 27) matrix of 

country dummies and the constant term and β is the (27 x 1) vector of respective unknown 

parameters (expressing the country effect) and the constant term. Actually, to avoid perfect 

collinearity, one country dummy must be skipped (Austria in the present case). X is, 

alternatively, a (1288 x 1) vector expressing the degree of rurality, that is, density (negatively 

related to rurality), PRI (positively related to rurality) or a (1288 x 2) matrix of dummies 

indicating urban-rural typologies (PR, IR, PU regions). γ is the respective unknown parameter 

indicating the rural effect. ε is a (1288 x 1) vector of i.i.d N(0,
2
I) disturbance terms. 

Therefore, (2) implicitly assumes no spatial correlation across units (regions) and, 

consequently, excludes the presence of a pure spatial effect.  

Nevertheless, the OLS model is not appropriate in case of spatially correlated disturbance 

terms, that is, whenever   NjiE ji  ,,0 . This happens when there is spatial correlation 

in the observed dependent variables Y that is not fully taken into account by the independent 
                                                           
3 Variables refer to four thematic areas: i) socio-demographic characteristics (7 indicators); ii) structure of the economy (7 
indicators); iii) land use characteristics (3 indicators); iv) geographical features mainly expressing remoteness from major 
urban areas (7 indicators) (Camaioni et al., 2013). 
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variables, D and X. In order to test the presence of this spatial dependence, Moran’s I statistic 

(i.e., a synthetic measure of spatial autocorrelation) is computed on both the dependent 

variable, Y, and the estimated residuals of the OLS model,  (Moran, 1950; Cliff and Ord, 

1981). To compute it, a spatial weights matrix (W) is adopted: a generic element 
*

ijw  can take 

two values: 1* ijw  when )(and iNjji  ; 0* ijw  when )(andor iNjjiji  . Here, 

N(i) is the set of neighbours of the i-th region, according to a first-order queen contiguity 

matrix adjusted for islands
4
 (Anselin, 1988). On average, each observation shows 5.04 

neighbouring regions. The values of the matrix W have been row-standardized, in order to get 

rid of some heterogeneity in the number of neighbours.
5
 

This row-standardized spatial weights matrix (W) is used to compute the global Moran’s 

I statistic both on the original variables (to assess the degree of spatial dependency in the 

distribution under study) and on the estimated disturbance terms of the various alternative 

models to assess whether spatial dependence remains after estimation. 

 

3.2. Including the Spatial Effects 

The presence of spatial autocorrelation makes the OLS estimates biased and inconsistent. 

Therefore, model (2) can be modified to make the spatial effects explicit. This allows directly 

estimating the pure spatial effect and getting rid of the spatial correlation. Manski (1993) 

illustrates three different forms of spatial interactions that may eventually generate the 

observed spatial effects: i) endogenous interaction effect, where the dependent variable in a 

given spatial unit depends on the dependent variable of other spatial units; ii) exogenous 

interaction effect, where the dependent variable in a given spatial unit depends on the 

independent (explanatory) variables of other spatial units; iii) correlated effect, where similar 

unobserved environmental characteristics of other spatial units (expressed by the disturbance 

term, ε) result in similar behaviour of a given spatial unit. Manski (1993) also proposes a 

general model where all effects are simultaneously present (the Manski model): 

        (3) 

where Y, D, β, X, γ and ε have the same meaning of (2); W is the (1288 x 1288) row-

standardised spatial weight matrix (from a first-order queen contiguity matrix), ρ and λ are 

unknown parameters expressing the pure spatial effect. 

As in (3) all possible effects generating spatial dependence are admitted, though it 

represents the most general representation, the parameters of the Manski model can not be 

identified and, therefore, empirically estimated. In practice, the endogenous and the 

exogenous effects can not be distinguished from each other (Manski, 1993). A viable 

alternative is thus to impose some restrictions in the unknown parameter space. From the 

general model (3) it is possible to move to a set of estimable and interpretable special cases
6
. 

Among these simpler model specifications, the OLS model, (2), is found, itself obtainable by 

imposing = ρ = λ = 0. The four special cases of interest here, however, are those models 

that selectively concentrate on one of the three abovementioned interaction effects, thus 

selecting one of the possible underlying economic explanations of the spatial dependence. 

A first step in this direction is to assume ρ = λ = 0. Such specification only admits the 

exogenous interaction effect by simply adding to the OLS specification (2) the neighbours’ 

average values of the independent variables:  

                                                           
4 In particular, 25 islands have been artificially linked to their closest regions, according to geographical distance.  
5 In defining the contiguity matrix, no distinctions between trans-national neighbours and national neighbours are taken into 
account. When considering connectivity, national borders may still represent “institutional” obstacles, while even some 
“natural” obstacles between regions may hinder connectivity. Nevertheless, all these aspects have been disregarded here. 
6 More details on the relationship between the general (Manski) model and the several special cases, as well as on the 
consequent estimation issue, can be found in LeSage and Pace (2009) and Elhorst (2010). 
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        (4) 

where  is the unknown parameter expressing the pure spatial effect.  

Model (4) is called the SLX model. Indeed, it just accounts for the spatially-lagged 

independent variables (i.e., the spatial lag of X variables). Besides the usual possible 

problems of multicollinearity and heteroskedasticity, model (4) does not pose particular 

econometric problems: thus, parameters can be consistently estimated with OLS estimation. 

Also economic interpretation is straightforward. The pure spatial effect here is given by the 

spatially-lagged rural effect (i.e., the degree of rurality of neighbouring regions). If parameters 

 and  share the same sign, the intensity of support received by a given region responds in 

the same direction to an increase (decrease) of its own degree of rurality and of the 

neighbouring regions. This case can be interpreted as evidence of rural/rural cooperation 

(integration) and of rural/urban competition. On the contrary, different signs of  and  may 

imply that the intensity of support responds in opposite directions to an increase (decrease) of 

its own degree of rurality and of the neighbouring regions. This case can be thus interpreted 

as an evidence of rural/rural competition and rural/urban cooperation (integration).  

Nevertheless, the estimation of the SLX model might not eliminate the spatial correlation 

of the estimated disturbance terms. Therefore, after the estimation of model (4), Moran test is 

performed on estimated disturbances. If spatial correlation is still present in the error terms, 

alternative spatial models should be specified and estimated to get rid of it.  

Spatial Error Model (SEM) is a special case of (3) when  = ρ = 0, that is, when 

separable endogenous and exogenous interaction effects are excluded. This specification 

includes the spatial influence within the error terms as follows (Anselin, 1988; LeSage and 

Pace, 2009): 

         (5) 

where  is the unknown parameter indicating the spatial dependence of the error term . 

Therefore, in this specification  incorporates the pure spatial effect. 

The economic interpretation of this model is that RDP expenditure intensity is affected 

by the over- (or under-)support received by the neighbouring regions (regardless of their 

degree of rurality). According to the observed sign of the spatial effects, the model can be 

interpreted in terms of place (territorial)-based effects. If parameter  shows a positive sign, a 

sort of “local agglomeration” effect of the over-(under-)support is observed in the allocation 

of the RDP expenditure. On the contrary, a negative sign indicates that a cross-compensation 

of over- and under-support is observed among neighbouring regions. Since the units under 

consideration are NUTS 3 regions, here this cross-compensation could be viewed as an “intra 

NUTS 2 compensation” effect. Given the ex-ante allocation of support to NUTS 2 regions, an 

over-support going to some NUTS 3 region, and independent from its degree of rurality, must 

be necessarily compensated by an under-support for some neighbouring regions. Specification 

(5) can not be consistently estimated with OLS estimation both for the presence of non-

spherical disturbances and because the model is no longer linear in the parameters due to the 

new unknown parameter . Consistent estimates of and,  are thus obtained by 

Maximum Likelihood Estimation (MLE) (Anselin, 1988; Anselin and Bera, 1998). 

A further model specification making the spatial effect explicit is the Spatial 

AutoRegressive (SAR) model. It can be obtained as a special case of (3) when = λ = 0. 

Therefore, it assumes that different levels of the dependent variable Y (i.e., the intensity of the 

RDP support) also depend on the levels of Y in neighbouring regions. In other words, spatial 

dependence only comes from endogenous interaction effects: 

        (6) 



6 

where is the unknown parameter expressing the pure spatial effect. It indicates to what 

extent the support received by neighbouring units affects the expenditure intensity of a given 

region. Spatial dependence implies non-spherical disturbances: as linearity in parameters does 

not hold true for , consistent estimation of (6) has to be performed through MLE. 

A final feasible specification can more directly take into account the co-existence of 

separable exogenous and endogenous interaction effects. The Spatial Durbin Model (SDM) is 

the feasible (i.e., estimable) specification of more general validity (LeSage and Pace, 2009; 

Elhorst, 2010), as it admits both the exogenous and the endogenous interaction effects: 

       (7) 

where both and are the unknown parameter expressing pure spatial effects. 

Estimation of the SDM can be obtained through MLE (LeSage and Pace, 2009; Elhorst, 

2010). This model specification is encountering increasing favour in recent literature (LeSage 

and Pace, 2009) and it can be considered a “landmark in raising the bar in the field of applied 

spatial econometrics” (Elhorst, 2010: 10). One reason relies on its robustness: actually, this 

model specification produces unbiased coefficient estimates even when the true data-

generation process is a SLX, SEM or SAR model. Moreover, it can be easily noticed that it 

does not impose any a priori restrictions on the magnitude of potential spatial 

interdependence (or spillovers), thus differing from other specifications (Elhorst, 2010, p. 10). 

Nonetheless, the economic interpretation of this model’s estimates is not immediate as spatial 

effects, or spillovers, come from both the degree of rurality of the neighbouring regions and 

by their over (under) support. 

 

3.3. Model Comparison and Direct and Indirect Effects 

Models (4), (5), (6) and (7) test alternative specifications for the spatial effect. Among 

these alternatives, the specification testing procedure outlined by Elhorst (2010) is here 

followed to find out the best fitting model. Moving from the residuals of the OLS model, the 

LM-tests and the robust LM-tests (Anselin, 1988; Anselin et al., 1996) are performed. If the 

OLS model is rejected in favour of the SAR model, the SEM or both of them, then the SDM 

should be estimated and, through likelihood ratio (LR) tests, hypotheses H0: = 0 and H0: 

+= 0 should be tested (Elhorst, 2010). If both hypotheses are rejected, the SDM can not 

be simplified to either the SAR model or the SEM: it is the model best fitting data. In the 

opposite case, either the SAR model or the SEM should be chosen, provided that the robust 

LM tests are concordant (Elhorst, 2010).
7
 Conversely, if the OLS model is not rejected in 

favour of both the SAR and the SEM models through robust LM-tests, then the SLX model 

should be estimated and the hypothesis H0 : = 0 be tested (Elhorst, 2010). 

The major implication of this search for the best fitting model is that, in the case of either 

the SAR model or the SDM (i.e., model specifications involving a spatially-lagged dependent 

variable), the interpretation of estimated parameters is not immediate as in conventional OLS 

estimation. Actually, when≠ 0, simultaneous spatial dependence occurs: thus, the vector  
in (6) and (7) can not be simply interpreted as the response of Y w.r.t. a change in X. 

Actually, any change of the dependent variable in a given observation has to be interpreted as 

a combination of both direct and indirect effects (impact measures), due to the presence of the 

spatially-lagged dependent variable. In particular, any change to an exploratory variable in a 

given region jointly affects the dependent variable both in that region (direct effect) and in all 

other regions (indirect effect) via the presence of the spatially-lagged dependent variable 

(LeSage, 2008; Elhorst, 2010)
8
. Furthermore, while the spatial lag of X just have a local effect 

                                                           
7 If one of these conditions is not satisfied (e.g., if the robust LM tests point to a model other than the LR tests), the SDM 
should be adopted as it being more general than both the SAR model and the SEM (Elhorst, 2010). 

8 As pointed out by LeSage (2008), these spatial spillovers arise as a main result of impacts that pass through neighbouring 
regions and back to the regions itself. 
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(as its influence is limited to neighbouring regions), these effects are global, as, through 

parameter , they spread to the whole sample of observations (LeSage, 2008). Here, the 

above-mentioned impact measures are computed by means of traces of powers of the weight 

matrix (obtained through Monte Carlo simulations). Besides point estimates, also distributions 

are needed for inference purposes. Thus, Markov Chain Monte Carlo (MCMC) estimation is 

used to create distributions for the impact measures, providing simulated z-values and 

simulated p-values (LeSage, 2008; LeSage and Pace, 2009).
9
 

 

4. Results 
4.1. Rural Effect and Pure Spatial Effect: Some Descriptive Statistics 

Firstly, some descriptive statistics may shed light on the presence of both rural and pure 

spatial effects. The relationship between indicators of RDP expenditure intensity and 

indicators of rurality is shown in Table 1. RDP expenditure intensities are significantly 

correlated to population density: nevertheless, this correlation is positive, thus operating in the 

opposite direction (the more densely-populated the region, the more the expenditure 

intensity). Conversely RDP expenditure intensities are not significantly correlated to the PRI, 

with the exception of expenditure per hectare of UAA. Again, more central and urban regions 

show a greater intensity of RDP expenditure. Not univocal findings emerge when looking at 

the distribution of RDP expenditure among Eurostat urban-rural typologies. With regard to 

this categorical variable, One-Way ANOVA (Analysis of Variance) is used to test whether 

values are statistically different or not. Preliminarily, the Levene’s Test is computed to test 

whether groups variances are equal or not.
10

 According to these tests, no statistically 

significant differences in RDP expenditure intensities are observed among Eurostat urban-

rural typologies, with the only exception of the RDP expenditure per agricultural GVA. In the 

latter case, however, PR regions show the greatest intensity of RDP expenditure (Table 1).  

 
Table 1. Intensity of RDP support accruing to NUTS 3 regions and indicators of rurality 

(Population density, PRI, Urban-rural typology) 

  Expenditure per UAA Expenditure per AWU Expenditure per GVA 

Pearson Correlation coefficients       

Population Density 0.235* 0.098* 0.089* 

  

(0.000) (0.000) (0.002) 

PRI -0.122* -0.052 0.033 

    (0.000) (0.067) (0.237) 

Urban-rural typology 

   Predominantly Rural regions 301.11 6,797.14 358.14 

Intermediate regions 288.48 8,447.46 337.62 

Predominantly Urban regions 334.94 5,849.01 233.97 

Levene’s test 3.920* 2.364 1.334 

  

(0.020) (0.094) (0.264) 

One-way ANOVA  0.488 2.886 4.828* 

  

(0.618) (0.056) (0.008) 
*: statistically significant at the 5% (2-tailed) 

 

Thus, RDP seems less “rural” than stated in its political intentions. This result is not 

surprising: it was already pointed out by Shucksmith et al. (2005), although they focused on 

NUTS 2 regions. Nonetheless, these evidences should be taken with caution. In fact, observed 

correlations may actually hide other spatial effects. In order to test the presence of spatial 

dependence in data, global Moran’s I test is performed on expenditure intensity indicators. In 

Table 2, tests are computed according to two different spatial weight matrices: a first-order 

                                                           
9 This analysis is conducted via the impacts command of the spdep package from the R software (Bivand, 2012). 
10 The null hypothesis that groups variances are equal is tested. When variances among groups are equal, simple F test for the 
equality of means in a One-Way ANOVA is performed. In the opposite case, the method of Welch (1951) is adopted. 
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queen contiguity matrix adjusted for islands and a 5 nearest neighbours matrix. Nevertheless, 

in both cases, spatial autocorrelation is found to be significant. The question thus becomes 

whether the country and the rural effects by themselves may capture all the spatial 

dependence which is observed in the allocation of RDP expenditure or some pure spatial 

effect should be admitted as well in models. 

 
Table 2. Global Moran’s I statistics for the intensity of the RDP expenditure (2007-2011) 

 First-order queen contiguity matrix 5 nearest neighbours matrix 

 Moran’s I p-value Moran’s I p-value 

RDP expenditure per UAA 0.2025 0.000 0.1654 0.000 

RDP expenditure per AWU 0.1644 0.000 0.1789 0.000 

RDP expenditure per agric. GVA  0.1710 0.000 0.1824 0.000 

 

4.2. Model Estimates 

Tables 3 reports the estimates of models (2), (4), (5), (6) and (7), focusing on different 

dependent variables (expenditure per UAA, per AWU, per agricultural GVA). Due to space 

limitations, tables do not show the estimates of (constant term and country effects). In the 

Table A.1 (in the Annex), these estimated parameters are reported for specifications referring 

to the RDP expenditure per UAA. They suggest that country effects are mostly statistically 

significant, as country matters in the allocation of the RDP funds. Expenditure intensity is 

large in many Eastern Member States and in some Western peripheral Countries 

(Scandinavia, Ireland and Portugal). Here, just the estimates of parameters γ (rural effect) and 

of parameters , λ, and ρ (pure spatial effect) are shown and commented, together with tests 

of spatial correlation on estimated residuals (Moran or LM tests).  

Table 3 jointly focuses on RDP expenditure intensity per UAA, AWU and agricultural 

GVA. Robust results are found. Actually, when the country effect is properly taken into 

account, the degree of rurality matters but it eventually operates in the opposite direction. The 

rural effect is found to be negative in most model specifications: the PRI negatively 

influences both RDP expenditure per UAA and per agricultural GVA, while population 

density positively affects them. Conversely, the rural effect plays a less important role when 

considering expenditure per AWU: indeed, the PRI just affects it in the SDM specification. 

Furthermore, in both SLX model and SDM, the spatial lag of the rural effect shows the 

opposite signs in almost all specification: the extent of peripherurality (density) in 

neighbouring regions positively (negatively) affects RDP expenditure intensity. This seems 

consistent with the presence of a rural/rural competition and rural/urban integration at NUTS 

3 level. Furthermore, models (5), (6) and (7) directly take into account spatial dependence 

within respective specifications. In model (5), parameter  is positive and highly significant in 

all specifications, thus suggesting the existence of a “local agglomeration” effect in the 

allocation of the RDP rather than an “intra NUTS 2 compensation” effect. In both SAR model 

and SDM, parameter  is significant, as neighbourhood matters in the allocation of RDP 

support. The positive sign can be interpreted as a combination of a “local agglomeration” 

effect and a “rural/rural competition” or “urban/rural integration” effect.  

Different results arise when the rural effect is expressed by means of Eurostat urban-rural 

typologies. The associated dummies do not provide significant parameter estimates, thus 

confirming that those indicator may be too rough to really capture the allocation patterns 

across the EU space. Furthermore, within this specification, neither SLX model nor SDM can 

be computed, since a categorical variable can hardly be spatially lagged. Nevertheless, in both 

SEM and SAR model, pure spatial effect parameters (i.e., and ) are found to be positive 

and statistically significant in any specification (Table 3). 

According to these model specifications, preliminary tests on residuals (Moran tests and 

LM tests on residuals’ autocorrelation) show that just the SEM and the SDM get rid of the 
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spatial autocorrelation within the error term. Conversely, both the OLS and the SLX models 

do not fully remove it, as indicated by the Moran test. Thus, estimation of β, γ and θ in those 

models remains biased and inconsistent. Furthermore, not even the SAR model can fully 

remove spatial autocorrelation across residuals. 

Thus, the SDM emerges as the only model (together with the SEM) able to eliminate the 

spatial correlation of the error term. Nevertheless, a specific testing procedure is here 

followed to detect which is the best fitting model (Elhorst, 2010). Table 4 shows the results 

from the LM-tests and the robust LM-tests, specific diagnostics that are based on the residuals 

of the OLS model (Anselin, 1988; Anselin et al., 1996). In all cases, OLS has to be rejected in 

favour of at least one specific spatial model: accordingly, the estimates from SDM have to be 

taken into account.
11

 According to Elhorst (2010), likelihood ratio tests are eventually 

computed to examine whether SDM can be simplified to either the spatial lag model or the 

spatial error model (H0:  = 0 and H0 :  = 0, respectively). In all cases both hypotheses 

are rejected. Accordingly, it is possible to conclude that the Spatial Durbin Model best 

describes data. The only exception is represented by the specification that includes RDP 

expenditure per AWU as a dependent variables and population density as a proxy of the rural 

effect (Table 4). 

Not surprisingly, SDM is found to be the best fitting specification in most cases. Of the 

price to be paid for the more general validity of this specification, however, is the less 

immediate interpretation of the estimated variables. Apparently, though with abovementioned 

inversion of signs, both measures of rurality (PRI and density) provides perfectly concordant 

indications. Nevertheless, due to the presence of the spatially-lagged dependent variable, in 

the SDM model, any regressors shows both direct and indirect effect on each observation, due 

to the presence of the spatially-lagged dependent variable. Therefore, Table 5 provides point 

estimates of the variables spatial lag impacts. Average direct, indirect and total effects of both 

X and WX, as well as their distributions, are computed by means of Markov Chain Monte 

Carlo (MCMC) estimations (LeSage, 2008; LeSage and Pace, 2009; Bivand, 2012).
12

  

By considering both direct and indirect effects, total effects associated to X and WX are 

generally larger than those estimated in (7). Furthermore, both direct and indirect effects are 

significant, with the only exception of the specifications based on the RDP expenditure 

intensity per AWU. In this case, the PRI has a negative direct impact on RDP expenditure but 

no significant indirect impacts. Within these specifications, significant indirect effects 

actually represent the global effects related to the above-mentioned variables. Thus, in that 

specification the PRI does not show any significant global effects, although it shows a 

significant local effects (due to the significance of WX). 

 

5. Some Concluding Remarks 

The study investigates the main drivers of the RDP expenditure allocation across the EU 

space by focusing on the most disaggregated territorial level (NUTS 3 level) admitted by data 

availability. Though different model specifications are considered, the SDM is found to be the 

best specification according to the testing procedure outlined by Elhorst (2010). Estimates 

suggest that country effect matters: regions belonging to some countries tend to receive more 

(less) funds than regions in other countries. Nevertheless, the most important result concerns 

the rural effect. Rurality matters in the allocation of RDP expenditure but it operates in the 

opposite direction: the less the region is rural, the higher the expenditure intensity. 

                                                           
11 It is worth reminding that this specification can not be estimated when the rural effect is considered by means of Eurostat 

urban-rural typologies. Again, this standard way to consider rurality shows its major drawbacks, as it is not possible to assess 

a proper spatial specification. 
12 According to previous results, the model explaining the intensity of RDP support per AWU by means of population density 
as a rural effect is not reported here. 
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Table 3. Model estimations for RDP expenditure 
a 

 
RDP Expenditure per UAA RDP Expenditure per AWU (€ / AWU) RDP Expenditure per agricultural GVA (€ / 000 €) 

 
OLS (2) SLX (4) SEM (5) SAR (6) SDM (7) OLS (2) SLX (4) SEM (5) SAR (6) SDM (7) OLS (2) SLX (4) SEM (5) SAR (6) SDM (7) 

γPRI -58.174* -88.146* -75.832* -61.882* -90.741* 137.467 -546.474 -312.675 -143.482 -631.749* -7.377 -51.393* -26.526* -16.269 -54.986* 

 
(7.629) (9.370) (8.147) (7.417) (9.018) (270.10) (334.10) (287.95) (259.45) (321.86) (9.516) (11.630) (10.090) (9.230) (11.341) 

θPRI spatially lagged  
75.542* 

  
72.825*  1723.826*   1265.132*  110.940*   100.067* 

  
(14.010) 

  
(13.556)  (499.60)   (481.17)  (17.400)   (16.945) 

 
  

0.339* 
  

  0.320*     0.277*   

   
(0.035) 

  
  (0.036)     (0.037)   

 
   

0.308* 0.306*    0.312* 0.297*    0.255* 0.226* 

    
(0.035) (0.036)    (0.036) (0.036)    (0.037) (0.038) 

Moran testb 0.116* 0.086* - - - 0.112* 0.095* - - - 0.098* 0.070* - - - 

LM testb - - - 19.391* 1.923 - - - 11.119* 1.715 - - - 6.876* 3.609 

γDensity 0.201* 0.255* 0.236* 0.208* 0.264* 1.929* 2.565* 2.585* 2.289* 2.795* 0.094* 0.157* 0.129* 0.108** 0.167* 

 
(0.019) (0.021) (0.019) (0.018) (0.020) (0.677) (0.763) (0.685) (0.649) (0.731) (0.024) (0.027) (0.024) (0.023) (0.026) 

θDensity spatially lagged  
-0.170* 

  
-0.176*  -2.015   -1.613  -0.201*   -0.188* 

  
(0.031) 

  
(0.030)  (1.121)   (1.074)  (0.039)   (0.038) 

 
  

0.357* 
  

  0.328*     0.288*   

   
(0.035) 

  
  (0.036)     (0.037)   

 
   

0.316* 0.328*    0.322* 0.319*    0.264* 0.254* 

    
(0.035) (0.035)    (0.036) (0.036)    (0.037) (0.037) 

Moran testb 0.124* 0.107* - - - 0.121* 0.116* - - - 0.109* 0.095* - - - 

LM testb - - - 26.328* 2.746 - - - 11.731* 7.406 - - - 11.255* 0.666 

γEurostat PR -47.202 c -36.788 -45.614 c -975.19 c -908.38 -1110.03 c -29.446 c -38.048 -39.446 c 

 
(29.06) 

 
(28.993) (28.101) 

 
(1007.10)  (998.79) (968.26)  (35.48)  (35.403) (34.479)  

γEurostat PU 62.176 c 74.44 69.738 c -2824.39 c -2249.48 -2150.02 c -98.165* c -83.027 -80.353* c 

 
(33.61) 

 
(35.183) (32.529) 

 
(1164.80)  (1223.63) (1120.42)  (41.04)  (42.823) (39.902)  

 
 

c 0.257* 
 

c  c 0.305*  c  c 0.240*  c 

   
(0.037) 

  
  (0.036)     (0.038)   

 
 

c 
 

0.278* c  c  0.303* c  c  0.237* c 

    
(0.036) 

 
   (0.036)     (0.037)  

Moran testb 0.087* - - - - 0.110* - - - - 0.090* - - - - 

LM testb - - - 0.73 - - - - 9.472* - - - - 2.494 - 

* Statistically significant at the 5% 
a Constant and country dummies’ parameters are not reported; see Table A1. In parenthesis: standard errors (OLS, SLX), asymptotic standard errors (SEM, SAR, SDM). 
b Moran test is performed on residuals; LM test assesses residuals' autocorrelation. 

c SLX and SDM model are not estimated for Eurostat urban-rural variables, as the latter are categorical variables and they can not be properly spatially lagged. 
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Table 4. Lagrange multiplier diagnostic for spatial dependence and Likelihood ratio (LR) test 

results 
 RDP / UAA RDP / AWU RDP / GVA 

LM tests    

γPRI    

LM error 36.697** 34.178** 26.353** 

Robust LM error 12.894** 0.005 2.623 

LM lag 29.359** 34.376** 24.756 

Robust LM lag 5.556* 0.203 1.0262 

γDensity    

LM error 41.909** 38.835** 32.633** 

Robust LM error 17.937** 3.103 12.468** 

LM lag 31.552** 37.992** 27.816** 

Robust LM lag 7.579** 1.259 7.650** 

γEurostat PR  - PU    

LM error 20.392** 32.952** 22.140** 

Robust LM error 3.334 0.006 0.239 

LM lag 23.616** 33.214** 21.916** 

Robust LM lag 6.558* 0.267 0.015 

LR tests    

H0 :  = 0    

γPRI 28.863** 6.776** 34.035** 

γDensity 35.287** 5.572* 30.080** 

H0 :  = 0    

γPRI 19.210** 2.249 24.576** 

γDensity 22.079** 0.1573 18.202** 
**, *: statistically significant at the 1%, 5%, respectively 

 

Table 5. Spatial Durbin Model: direct, indirect and total impact estimates for and (simulated 

z-values in parenthesis)
 

 

γPRI θPRI spatially lagged γDensity θDensity spatially lagged 

RDP / 

UAA 

Direct -92.76** (-9.84) 74.45** (5.57) 0.27** (12.90) -0.18** (-5.79) 

Indirect -37.90** (-5.16) 30.42** (3.89) 0.12** (5.69) -0.08** (-4.04) 

Total -130.66** (-8.76) 104.87** (5.22) 0.39** (10.52) -0.26** (-5.36) 

RDP / 

AWU 

Direct -645.00* (-2.07) 1291.67** (2.66) - - 

Indirect -253.98 (-1.92) 508.62* (2.40) - - 

Total -898.98* (-2.05) 1800.29** (2.63) - - 

RDP / 

Agric. 

GVA 

Direct -55.63** (-4.79) 101.24** (5.94) 0.17** (6.65) -0.19** (-5.08) 

Indirect -15.44** (-3.19) 28.11** (3.68) 0.05** (3.99) -0.06** (-3.61) 

Total -71.07** (-4.60) 129.34** (5.74) 0.22** (6.19) -0.25** (-4.91) 
**, *: statistically significant at the 1%, 5%, respectively 

 

Furthermore, a major objective of the study is to investigate how neighbourhood matters 

in the allocation of funds (pure spatial effect), providing tentative interpretations for this. 

Estimates agree in showing that neighbouring regions play a role and are also concordant in 

indicating the direction of this influence. More urban neighbouring regions reduce the RDP 

expenditure intensity, suggesting a sort of rural/urban competition, while over-(under-) 

support in neighbouring regions tends to induce over-(under-) support also within the region 

under question (“local agglomeration” effect). Both the magnitude and direction of this spatial 

conditioning of RDP fund allocation represent the main results of the study. 

In terms of policy analysis, future research directions suggested by these results could 

consist in a more in-depth investigation on RDP expenditure by disaggregating it into axes 

and measures, thus linking disaggregated expenditure intensity to specific socio-economic 

characteristics of the regions. More generally and importantly, a theoretical explanation of the 

concentration of RDP expenditure intensity in a given region and of the influence of the 
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neighbourhood is still missing. Political economy models could provide useful insight into the 

mechanisms underlying the observed spatial distribution and dependence. 
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ANNEX  

Table A.1 reports the estimates of parameters in β (constant term and country effects) for 

models (2), (4), (5), (6) and (7) when the RDP expenditure per hectare of UAA is used as 

dependent variable (Y) and rurality (X) is measured by the PRI. 

 
Table A.1. Constant term and country effect estimates (standard errors/asymptotic standard 

errors in parenthesis) 
  OLS (2) SLX (4) SEM (5) SAR (6) SDM (7) 

Constant 1653.46** 953.51** 1914.59** 1514.28** 840.82** 
 (134.83) (186.08) (151.01) (136.09) (184.13) 

Belgium -607.94** -546.82** -590.85** -477.75** -420.06** 

 (95.97) (95.57) (123.33) (93.98) (93.71) 
Bulgaria -279.82* -418.20** -199.37 -154.06 -288.65** 

 (109.72) (111.49) (141.43) (106.08) (107.73) 

Cyprus -123.90 -120.77 -0.90 -13.45 15.16 
 (427.66) (422.86) (412.30) (411.42) (406.88) 

Czech Republic -287.69* -309.23* -288.16 -222.66 -244.03 

 (132.99) (131.56) (159.40) (128.20) (126.82) 
Germany -511.08** -502.53** -508.35** -400.70** -393.50** 

 (73.98) (73.17) (92.76) (72.82) (72.15) 

Denmark -692.01** -615.34** -665.32** -537.14** -464.69** 
 (150.82) (149.80) (198.59) (146.42) (145.52) 

Estonia -320.83 -386.01 -287.06 -226.93 -290.66 
 (201.29) (199.40) (270.23) (193.93) (192.13) 

Spain -594.96** -607.65** -575.34** -448.85** -462.46** 

 (92.75) (91.74) (121.46) (91.09) (90.15) 
Finland -168.49 -206.96 -154.48 -136.69 -174.07 

 (118.27) (117.16) (161.36) (113.86) (112.79) 

France -598.52** -597.43** -578.14** -450.00** -450.35** 
 (83.45) (82.51) (107.69) (82.51) (81.70) 

Greece -321.48** -403.88** -291.12* -228.18* -308.50** 

 (93.68) (93.88) (123.27) (90.79) (90.96) 
Hungary -238.70* -279.64* -157.57 -149.79 -190.10 

 (118.10) (117.02) (149.83) (113.71) (112.68) 

Ireland -358.33* -370.76* -349.16 -272.08 -284.88 
 (174.21) (172.27) (239.38) (167.98) (166.13) 

Italy -514.53** -510.70** -498.00** -396.40** -393.82** 

 (81.93) (81.01) (104.96) (80.32) (79.47) 
Lithuania -325.70* -416.19** -287.74 -218.51 -306.75* 

 (151.81) (151.04) (196.22) (146.48) (145.72) 

Luxembourg -406.59 -435.79 -429.33 -286.51 -315.58 
 (426.75) (422.00) (408.18) (410.91) (406.29) 

Latvia -426.18* -493.19* -386.62 -309.10 -374.82 

 (201.59) (199.72) (244.18) (194.37) (192.60) 
Malta 1906.02** 1958.46** 1895.81** 1254.91** 1311.62* 

 (305.81) (302.53) (439.46) (302.43) (299.62) 

Netherlands -690.11** -619.64** -685.17** -545.44** -478.87** 
 (97.59) (97.38) (126.14) (95.93) (95.82) 

Poland -217.49* -272.85** -172.08 -138.00 -192.12* 

 (88.15) (87.76) (114.40) (85.00) (84.62) 
Portugal -144.59 -195.93 -142.27 -107.13 -156.98 

 (107.13) (106.35) (140.72) (103.22) (102.46) 

Romania -375.24** -5087.56** -288.29* -221.25* -351.23** 
 (99.30) (101.25) (129.14) (96.38) (98.19) 

Sweden -328.77** -337.19** -307.90 -256.11* -264.91* 

 (116.17) (114.88) (157.32) (112.15) (110.94) 
Slovenia 6.38 5.52 32.88 -6.09 -6.80 

 (140.84) (139.26) (171.07) (135.48) (133.97) 

Slovakia -145.56 -164.85 -89.43 -113.22 -132.86 
 (164.81) (163.00) (188.01) (158.55) (156.82) 

United Kingdom -684.51** -625.80** -703.84** -538.22** -483.74** 

 (81.78) (81.59) (106.41) (81.49) (81.56) 

**, *: statistically significant at the 1%, 5%, respectively 


